
Spring 2019 Programming Languages Qualifying Exam

CODE_______________________________

This is a closed book test.

Correct, clear and precise answers receive full marks

Please start a new page for each question.

There are five (5) questions, each 20 points

1 | P a g e

Spring 2019 Programming Languages Qualifying Exam

1) (20pts) Object Oriented languages

a) Define/describe Object Oriented paradigm.

The object oriented paradigm is where the main entity in programming is an object. The

objects “contain” data and “methods” which allow external routines to access and mutate the

data. The object is in control of the underlying data structures and external objects can only

interact with the object with the method (API). Objects usually are associated with a CLASS.

Object instances all use the same methods. Classes can inherit features from other classes

and some languages allow for inheritance from multiple classes, which can cause a diamond

problem

b) Java has non-object primitives like int and char, while Python treats everything as an Object.

Identify the strengths and weaknesses of both approaches and propose an explanation on why

these languages handle primitives differently.

Python uses everything is an object to make accessing anything in Python the same. Creating

a STACK class does not disallow the use of primitives, for example. Java does distinguish

between primitives and object. One advantage is better performance when dealing with

simple data structures, especially arrays of primitites. Java does not need to do dynamic type

checking and indirect referencing via the heap.

2 | P a g e

Spring 2019 Programming Languages Qualifying Exam

2) (20pts) Memory management

Consider the following C program. Identify the primary memory segments, provide their

purpose and discuss how memory is maintained in each segment. Show the specific memory

settings when function f() is reaches the base case. What is the output of the print statement?

char *s;

void f(int i)

{ static int k=0;

 k = k + I;

 if (i <= 0) printf(“k is %d string is %s\n”, k, s);

 else f(i – 1);

}

int main()

{ char *s;

 s = malloc(20);

 strdup(s,”hello”);

 f(2);

}

STACK, HEAP, DATA, CODE segments

The Code segment holds the object code of the program. It can also hold all string literals (like

“hello”

The data segment holds the char *s, and the static int k from f()

The heap is used to allocate 20 bytes for s to point to. It holds the string “hello”, a copy from

hello out of the code segment.

Runtime stack should have main → f(2), f(1), f(0). Print “k is 3, string is hello”

3 | P a g e

Spring 2019 Programming Languages Qualifying Exam

3) (15pts) What does BNF stand for? In what context is it used? What is BNF similar to as it

relates to Automata?

Backus Nauer Form. BNF is used to describe the syntax of a language using a recursive meta-

language. It is similar to Context Free Grammars.

4) (15pts) Given the symbols {a,b}, Create a Deterministic Finite Automata which accepts all

strings that contain no more than two consecutive b’s. For example abbabbaba is acceptable,

where as aabbababaabbba is not (because the string has 3 or more consecutive b’s).

Requires reader to ensure the FA is deterministic and accepts properly

5) (15pts) Compare and contrast dynamic and static type checking.

Type checking ensures reliability of a language. For example, assigning a string to an integer

variable can be problematic. Compiled languages usually perform most of their type checking

during compilation – this is called static type checking. Dynamic type checking is done during

run time. Many interpreted language implement dynamic type checking. This means that for

each operation, additional instructions must be made to ensure that operation is proper for

the operands. Dynamic type checking can occur for compiled languages.

6) (15pts) Write the function nth in a functional language (LISP preferred), which takes a

positive integer N, and a list L, and returns the element at the Nth position in the list. You may

assume that 1 <= N <= length of the list. In other words, don't worry about an out-of-bounds

index. Your function must be recursive. For example: (nth 2 ‘(a b c)) == ‘b

(define nth (N L)

 (if (eq? N 1) (car L) (nth (- N 1) (cdr L)))

4 | P a g e

